
  
Abstract— By starting from the general theory of the one-

variable Hermite polynomials, we will introduce a bi-
dimensional generalization of them that is useful to obtain a 
different approach with the harmonic oscillator functions. We 
will see some interesting properties of this class of Hermite 
polynomials and we also discuss the related applications on the 
particular partial differential equations. 
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I. INTRODUCTION 
N previous papers [1,2] we have discussed different kinds 
of the Kampé de Feriét Hermite polynomials and some 
examples of their applications [3,4].  The approach we have 

used to introduce the different families of these important 
orthogonal polynomials has been extremely varied. We want 
now introduce the ordinary one-variable Hermite polynomials 
and the related generalization of  two-variable by using the 
formalism and the techniques of the exponential operators. If 
we consider a function ( )f x , which is analytic in a 
neighborhood of the origin, it can be expanded in Taylor series 
and, in particular, we can write: 
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where λ  is a continuous parameter.  
The so-called “shift” or “translation” operator can be defined 
as: 
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limiting ourselves to real domain and by assuming that λ  is a 
real number and ( )f x  is also analytic in x λ+ , without any 
other restriction. The action of the exponential operator, on an 
analytic function ( )f x , produces a shift of the variable x  by 
λ . The two-variable Hermite polynomials can be defined by 
using the relation stated in (2). After noting that: 
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we have: 

 
( ) mf x x=  implies ( )yD m me x x y= + , (4) 
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The above procedure can be easily generalized to exponential 
operators containing higher derivatives. In fact by considering 
the second derivative, we get: 
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and by noting that: 

 
2 2!

( 2 )!
n m m nmD x x

m n
−=

−
, (7) 

 
we have: 
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We can now define the two-variable Hermite polynomials 

(2) ( , )nH x y  of Kampé de Fériet form [5,6] by the following 
formula: 
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It is important to note that, assuming: 
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the general identity reads: 
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and then, we can immediately obtain: 
 

(1) ( , ) ( )n
nH x y x y= + , (12) 

 
which can also be recast in the form: 
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In the following we will indicate the two-variable Hermite 
polynomials of Kampé de Fériet form by using the symbol 

( , )nH x y  instead than (2) ( , )nH x y . 
The two-variable Hermite polynomials ( , )nH x y  are linked to 
the ordinary Hermite polynomials by the following relations 
[5]: 
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where: 
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and: 
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where: 
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Finally, it is also important to note that the Hermite 
polynomials ( , )nH x y  satisfy the relation: 

 
( ,0) n

nH x x= . (18) 
 

From the above relations, we can deduce that the generalized 
Hermite polynomials satisfy the following partial differential 
equation: 

 
2

2( , ) ( , )n nH x y H x y
y x

∂ ∂
=

∂ ∂
. (19) 

 
This result help us to derive an important operational rule for 
the two-variable Hermite polynomials. In fact, by considering 
the differential equation (19) as linear ordinary in the variable 
y and by remanding the equation (18) we can immediately 
state the following relation: 
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The generating function [7] of the above two-variable Hermite 
polynomials can be state in many ways, we have for instance, 
after noting that they solved the following differential-
difference equation: 
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where a and b are real numbers, that by exploiting the 
generating function method, setting: 
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with t continuous variable, we can rewrite the equation (21) in 
the form: 
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that is a linear ordinary differential equation and then its 
solution reads: 

 
2( ; ) exp( )G x t xt yt= + , (24) 

 
where we have putted az x=  and bz y= .  
Finally, by exploiting the r.h.s of the previous relation we find 
the generating function of the generalized Hermite 
polynomials ( , )nH x y , that is: 
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II. HERMITE POLYNOMIALS WITH TWO INDICES AND TWO 
VARIABLES 

  In the previous section we have introduced the one-variable, 
one-index Hermite polynomials ( )nHe x  as a particular case of 
the polynomials ( , )nH x y . It is possible to use these 
polynomials to introduce a different class of Hermite 
polynomials with two indices and two variables, which are a 
vectorial extension of the polynomials ( )nHe x ; this means 
that from an index acts on a one-dimensional variable, we will 
have a couple of indices acting on a two-dimensional variable. 
Let the positive quadratic form: 
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where a, b, c are real numbers. The associated matrix reads: 
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, (27) 

 

and since we have putted 2 0ac b− > , 
^

| | 0M > , that is an 
invertible matrix. Let now a vector: 
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 , it immediately follows that: 
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Let: 
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two vectors of the space 2

 such that: 
 
t u≠ , (| |,| |)t u < +∞ . 
 
We will called two-index, two-variable Hermite polynomials 
[6] and we will indicate with the symbol , ( , )m nHe x y , the 
polynomials defined by the following generating function: 
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(the superscript “t” denotes transpose).  
These polynomials are exploited in many fields of pure and 
applied mathematics [8,9]. They are very useful in description 
of the quantum treatment [10] of coupled harmonic oscillator.   
 By using the definition of the quadratic form (eq. (26)), we 
can introduce the adjoint class of the two-index, two-variable 
Hermite polynomials , ( , )m nHe x y .  

Since we have stated that the associated matrix 
^

M  at the 
quadratic form is invertible (eq. (26),(27)), we can define the 
quadratic form adjoint, by setting: 
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We define the adjoint polynomials of  the two-index, two-
variable Hermite polynomials, the polynomials expressed from 
the following relation: 
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where the vectors: 
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and such that: 
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It is easy to note that, from the second of the relations 
contained in the above equation, it immediately follows that: 
 
r s≠ , . (| |,| |)r s < +∞ . 
 
By using the relations in the equation (33), the expression of 
the generating function (eq. (31)) defining the adjoint Hermite 
polynomials of two-index and two-variable, could be recast in 
the following form: 
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In the following section(s) we will derive a number of identitie 
regarding the two-index, two-variable Hermite polynomials 
and their adjoint. 
 

III. GENERALIZED IDENTITIES INVOLVING TWO-INDEX, TWO-
VARIABLE HERMITE POLYNOMIALS 

Before to proceed, it is necessary to remind some basic rules 
of the vectorial differential calculus. By the positions stated in 
the previous section, we have: 
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Similar relations could be stated by deriving  respect to y. The 
Hermite polynomials of the type , ( , )m nHe x y  [5,6] satisfy the 
following recurrence relations: 
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where a, b, c are real numbers defined in the relations (26). 
To prove the first of the above recurrence relations, it is 
enough to note that, by deriving with respect to t in the 
equation (29) [7], we have: 
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and by exploiting the l.h.s, using the results stated in the 
equations (35-37), we get: 
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that is: 
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After manipulating the l.h.s of the above equation and by 
equating the like t-power, we immediately obtain the relation 
(38). By following the same procedure, but by deriving with 
respect to u in the equation (29), we have: 
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and then the recurrence relation (39) follows. 

By using the same procedure and the related formalism, it is 
possible to state others important relations involving the two-
index, two-variable Hermite polynomials. By omitting the 
proof, since it completely similar to the above procedure, we 
can state the relations: 
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The four relations explicated in the equations (38-39) and (44-
45) can be combined to define the shift operators related to the 
Hermite polynomials of the type , ( , )m nHe x y .  
For instance, bi putting the relation (38) in the (44), we get: 
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By combining the other relations, using the same procedure of 
the above, we finally obtain: 
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It is now natural introduce the shift operators, by putting: 
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If we indicate with the symbol ,m nf the generic Hermite 
polynomial function, it is possible to read the action of the 
shift operators in a more compact way; that is: 
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,0 , 1,
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m n m n

m n m n

E f f

E f f

± ±

± ±

   =  

   = 

 (55) 

The operators defined above are discrete operator, in the sense 
that they depend by the indices m and n, that as we said are 
positive integer.  
 

IV. DIFFERENTIAL EQUATIONS RELATED TO THE POLYNOMIALS 

, ( , )m nHe x y  

The relations  stated in previous sections and in particular 
the action of the shift operators defined in the equations (51-
54), allow us to state an important result for the two-index, 
two-variable Hermite polynomials discussed in this paper [6].  
The polynomials , ( , )m nHe x y  satisfied the following partial 
differential equation: 
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where we have indicated the partial derivative vector with: 
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From the relations (55), it is evident that the following 
equations hold: 
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By exploiting these relations, we easily get: 
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By summing up these last expressions, we have: 
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and once we rearrange the terms in the l.h.s., we can write: 
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By noting that: 
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we immediately get: 
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By substituting these last identities in the equation (62), we 
obtain: 
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which is exactly the partial differential equation defined in the 
equation (56). 
By using an analogous procedure, it is also possible to prove 
that the adjoint two-index, two-variable Hermite polynomials, 
namely , ( , )m nG x y , satisfy a similar partial differential 
equation. 
  In a forthcoming paper we will discuss more aspects related 
to this family of Hermite polynomials and we will see, in 
particular, some applications to the harmonic oscillator 
functions [10,13] by using the property of bi-orthogonality 
satisfied by the Hermite functions derived from the Hermite 
polynomials treated in the present paper. Moreover, these 
polynomials are a very useful tool to investigate many 
problems connected with the theory of special polynomials as 
Chebyshev and Genebauer  [3,11] and the field of special 
functions to derive relevant operational results [12,14]. 
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